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An entropy layer is formed on the surface of blunt bodies in supersonic gas flow [i]. 
Under the entropy layer there is a boundary layer, which grows in the downstream direction. 
Transition from laminar to turbulent flow results from the development of unstable pertur- 
bations in the boundary layer [2, 3]. Experiments on cones and flat plates have shown [4, 
5] that if one increases the blunting of the leading edge, the extent of the laminar flow 
section increases, reaches a maximum, and then decreases. Belolipetskii and Stepanova [6] 
were able to explain in part the displacement downstream of the transition zone as being due 
to a decrease of local Reynolds number, computed from the flow parameters at the bottom of 
the entropy layer, but this model does not describe the reversal of transition. 

The phenomenon of reversal may arise from the following causes. The entropy layer de- 
forms the mean flow profile in the laminar boundary layer, causing the latter to become un- 
stable. Using the asymptotic theory of free interaction reference [7] determined that the 
entropy effect leads to instability of the boundary layer to small perturbations. It was 
shown [8, 9] from numerical computations that the entropy layer on a blunt flat plate acts 
in a destabilizing way on the second unstable boundary layer mode. The other possibility is 
instability of the entropy layer itself. Self oscillations developing in the entropy layer 
are free to penetrate into the boundary layer and thereby initiate early transition to tur- 
bulence. Khan et al. [8, 9] investigated numerically the stability characteristics of the 
entropy layer on a blunt flat plate. However, in formulating the problem an inaccuracy oc- 
curred in the boundary conditions for perturbations at the bottom of the entropy layer. 

This paper uses linear theory to analyze self oscillations in the entropy layer. The 
method of matched expansions is used to obtain the correct boundary conditions for the per- 
turbations. It is shown that in the leading approximations the entropy layer instability 
is described by inviscid equations. The author performs a numerical and asymptotic analysis 
of acoustic self oscillations and of the unstable mode. 

i. We consider flow of a supersonic gas over a blunt flat plate. At distance L from 
the leading edge a boundary layer is formed of thickness 6 e = L//R L and an entropy layer of 
thickness on the order of the blunting radius r N. The Reynolds number is R L = LUePe/De, 
based on the flow parameter s at the outer edge of the boundary layer. We investigate the 
flow region where 6 e << r N << L, i.e., the boundary layer lies at the bottom of the entropy 
layer. Since r N << L, the density discontinuity degenerates into a Mach wave and the flow 
parameters at the outer edge of the entropy layer are close to those of the oncoming stream 
U~, p~, ~ .  

We make nondimensional the longitudinal coordinate x and the transverse coordinate y 
with respect to the blunting radius rN; and the density p, the x and y velocity components 
U and V, the temperature T, the pressure P and the viscosity D with respect to their values 
in the oncoming stream. As the characteristic boundary layer thickness we take the scale 

6 = L/JLU=p~/D= ~ 6e" We introduce the small parameters e = 6/r N and e0 = rN/L. The struc- 
ture of the mean flow is shown in Fig. i. It follows from the asymptotic analysis of [i0] 
that in the inviscid regions 2 and 3 with characteristic scale r N the basic flow has the 
form 

P = l + O ( ~ ) ,  T = T ~ ( y ) + O ( % ~ ) + O ( e ~ ) ,  ( 1 . 1 )  

U = U~ (y} + 0 (%~} + 0 (~D, V = 0 (~o~} + 0 (~);  
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v f ( y ) =  ~ 2 7 - ] 7 ~ ]  ' y = 0 ~ d *  

(M i s  t h e  blach number  o f  t h e  oncoming  s t r e a m ,  y i s  t h e  a d i a b a t i c  i n d e x ,  and ~ i s  t h e  s t r e a m  
f u n c t i o n ) .  

I n  t h e  b o u n d a r y  l a y e r  ( r e g i o n  1 o f  F i g .  1) t h e  r e l a t i o n s  [9] a r e  v a l i d  

p = l + o ( + q ,  u = u~ @0 + o (~o~) + o (~u~ (o)), 
: ( 1 . 3 )  

T = r~ (y,) -~ 0 (~o e) Jr 0 (eU~ (0)), 

where Yl = YI~ is the inner variable; the primes denote differentiation with respect to y; 
U I and TI are the profiles of velocity and temperature in the plane-parallel zero-gradient 
boundary layer, which as Yl § ~ tend to the limiting values U l + Uf(0 ) = Ue, T I + Tf(0 ) = 
T e �9 

On the basic flow we superimpose the two-dimensional perturbation 

(u, v, p, 00, 90) = (/, a~,  ~, 0, r) exp (iczx - -  io)t). 

Here  u ,  v ,  p ,  00,  P0 a r e  p e r t u b a t i o n s  o f  t h e  l o n g i t u d i n a l  and v e r t i c a l  v e l o c i t y ,  p r e s s u r e ,  
t e m p e r a t u r e  and d e n s i t y ;  a i s  t h e  wave number ;  m i s  t h e  f r e q u e n c y ,  r e f e r e n c e d  t o  U~/rN;  and 
t i s  d i m e n s i o n l e s s  t i m e .  

We c o n s i d e r  p e r t u r b a t i o n s  o f  c h a r a c t e r i s t i c  w a v e l e n g t h  X ~ r N and f r e q u e n c y  ~U~/rN,  
i . e . ,  a = 0 ( 1 ) ,  ~ = 0 ( 1 ) ,  and t h e  p h a s e  v e l o c i t y  i s  c = m / a  = 0 ( 1 ) .  We c o n s i d e r  t h a t  R = 
r N p ~ U ~ / ~  >> 1, and f o r  t h e  a n a l y s i s  we u s e  t h e  D a n a - L i n  s y s t e m  [2] 

p[ i (U - -  c)/+ U'~] + in/(-~M 2) = %e2J'la, 
ia2p(U - -  c)q) + n'/(?M 2) = O, i ( U  - -  c)r + 9'(9 + p( i /  + q)') = O, 

(1.4) p [ i (u  - c)O + T '~]  + (v - t ) ( i l  + ~') : ~o~(~v/(r~)o ' ' ,  

~ t P  = rip -~ O1T. 

In writing this system we make the assumption that R -~ = ~o~2; and o is the Prandtl number. 
On the perturbation we impose the boundary conditions 

(p(o) = I(o) = o(o) = o, (~ , / ,  o, ~) ---,- o, v--,- oo. ( 1 . 5 )  

2. In the first and fourth equations of the system (1.4) there is a small parameter 
with a leading derivative. The basic flow is described by the asymptotes (i.i) and (1.3) 
in the regions y = 0(I), Yl = 0(i). We shall use the method of matched expansions [Ii]. 
We consider the case when the phase velocity c r = Re(m/a) > Uf(0 ). Then there is a critical 
layer in which Uf(yc) = Cr, and it is either absent (c r > i) or present in the entropy layer 
2. The characteristic regions for the perturbation are shown in Fig. i. Near the wall 
there forms a viscous sublayer of thickness 61 ~ R-i/2 = e01/2e. Since the ratio of the 
thickness of the viscous sublayer to that of the boundary layer is 6~/6 ~ g0~/= << i, the vis- 
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Substituting Eq. (2.1) into Eq. 
no viscous terms 

cous sublayer lies at the bottom of the boundary layer. Near the point Yc there forms a 
critical layer of thickness 6~ ~ R -I/3 = (e0e2) I/3. The viscous sublayer W and the critical 
layer C are separated by the inviscid zones i and 2. 

According to Eq. (i.i) for the main flow we write the perturbations in the inviscid re- 
gions 2 and 3 in the form 

(f, r ~, O, r) = (/o, %, no, 0o, ro) + 0 (eeo) q- 0 (e*) + 0 (~]). ( 2 .  i) 

(1.4) we obtain in the first approximation the system with 

t 
% 

p 

U 2 - c % = - i  1 M ~(U~-c) l 

~'o = - -  icr 2 (U2 - -  c) 
T~ %" 

~0' 
( 2 . 2 )  

To find analytical solutions of system (2.2) we must have rigid limits on the wave 
number a. To avoid this the system was integrated numerically. The critical point Yc moved 
away downstream in the complex y plane. The correct standoff was determined by matching so- 
lutions in the critical layer with solutions in regions 2 and 3 [3, 12]. The integration 
was performed from the outer edge of the entropy layer to the wall. At the outer edge we 
used the asymptote satisfying the condition for attenuation of the perturbations: 

y - + c o ,  (%, ~o )Nexp(~y ) ,  % =  ~ f ~ 2 - - M ~ ( ~ - -  o)~, R e ~ < 0 .  ( 2 . 3 )  

We s h a l l  c o n s t r u c t  t h e  s o l u t i o n  in  r e g i o n  1. In  sys t em ( 1 . 4 )  we c o n v e r t  t o  t h e  i n n e r  
v a r i a b l e  Yz = y / E .  We make t h e  e x p a n s i o n s  

] = ~0 -}- 80~1 -~- "'" -'~ 8(h0 -'~ 80~1 "4- . . .)  "~ . . . .  
r = 8(~00 -{- 80r @ ...) -~- 82(r @ 80r + .. .) -~- . . . .  

= ~oo + ~(aol + ~o~o2 + ...) + .... 
0 = ~o + %0ol + "" + ~(01o + ~o0~1 + ...) + . . -  

tem 
Taking account of Eq. (1.3) for the main flow, in the leading order we obtain the sys- 

] ig~176 da00 
t i, (U~ - -  c)/oo + ~ %0 . . . .  0, T-~ ?M 2' dYl 

i ( u ~ - o  ~ 0 0 -  %)  % d~ 1 d~-q 

[ dT1] ( .a_dCPoo~ 
r-~ ~(u~ - c) Ooo + %o-~7~] + (v - i) qoo - - ~ [ )  = o. 

Its solution will be 

~oo = BI, 0oo = 7 -- t BITI __ ~oo dT1 
? i(U 1 -  c) d~" 

% o = ( U l - - c )  B 2 --  M~(U-~L_ c~2| dYl,  

In  r e g i o n  W we c o n v e r t  t o  t h e  v a r i a b l e  q = yz/Evf~o and make t h e  e x p a n s i o n s  

(2.4) 

(Ul ,  T1, Pl, ~tl)._.w. (Uw, Tw, Ow, ~w) 2c ~1o/2 (dU1 tiT1 d~)l d~l) 
\ dY----l' dYl' dill' dYl) w n + . . . .  

/ =/oo + ~ l o ~  + . . .  + ~ (1~o + ~11~ + , . . )  + .. . .  

= ~o ~'~ (~oo + ~Y"~o~ + . . . )  + ~ Y ~  (~o + ~o~'"~ + . . . )  + . . . .  

= ~oo + ~%o (~o~ + ~om~o~ + . . . )  + . . . .  o -- %o + ~Y~Oo~ + . . .  
. . .  + ~ ( %  + ~'~e~ + . . . )  + . . .  
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Here the subscript w denotes the value for Yl = 0. In the leading order we have the system 

ic i d2/oo d%o ( 0oo ) 
C /~176 = --- + o, - ic  oo- 

+ i/oo + ~o_____o = O, 

000 ( . d~oo~ ~w d20oo 
--~cv~ =--(V--t)  Z/oo-VC/+~-  dn ~ '  /oo(0)=+oo(0)=0oo(0)--0. 

I t s  s o l u t i o n  h a s  t h e  f o r m  

A1T w 
noo = A1,/oo = c - ~  [1 - -  exp ( - -  kl~)], 0oo = ? -- t ? A1T~[t--exp(--k2~)], 

�9 - - ~ c  (2.5) %0 A~ D0~ + ~ (1 - -  exp ( - -  k~)) + ~ (1--  exp ( - -  k2~)) , k~ 

Rekl>0, k2= f ~ k  x, D 0 = ~  t - -  dM~ DI= ~VM--- ~, D 2 = i c ~  

Compar ing  Eqs .  ( 2 . 1 ) ,  ( 2 . 4 ) ,  and ( 2 . 5 ) ,  we f i n d  t h e  b o u n d a r y  c o n d i t i o n  f o r  Eq. ( 2 . 2 )  

~0(0) = E(I --  C)~o (0) 0 ~2 (U1-- c)2 ~12 (Ue-- c)2 

We note that in the case of neutral perturbations the integrand expression is the difference 
between the squares of the local sound speeds in the coordinate system moving with phase 
velocity c. 

Thus, two-dimensional perturbations in the entropy layer are described by the system 
of inviscid equations (2.2) with boundary conditions (2.3) and (2.6). In the main approx- 
imation we use the no-penetration condition ~0(0) = 0. Here a perturbation of the entropy 
layer does not affect the boundary layer. In the next approximation Eq. (2.6) contains the 
integral characteristic of the mean flow in the boundary layer. To describe perturbations 
in the entropy layer references [8, 9] used the Lees-Lin system of equations, which account 
for all the viscous terms of the linearized Navier-Stokes equations. Here the boundary con- 
dition (1.5) converts to the outer edge of the boundary layer with no change. It can be 
seen from the foregoing analysis that this procedure is incorrect. Even in the inviscid ap- 
proximation the boundary condition at the bottom of the entropy layer dependson the mean 
flow in the boundary layer. The reason is that the viscous sublayer W lies at the bottom 
of the boundary layer and is separated from the entropy zone by the inviscid region i. 

The problem of Eqs. (2.2), (2.3), and (2.6) is an eigenvalue problem. The wave number 
and frequency ~ are connected by the dispersion relation D(~, a) = 0. Analysis of stabil- 

ity of the entropy layer reduces to examining properties of the roots of the dispersion equa- 
tions ~(~) or a(~). 

3. The results of Sec. 2 are also valid for short-wave perturbations satisfying the 
condition i << ~ << ~-l, i.e., with a wavelength much exceeding the boundary layer thickness, 
but much less than the entropy layer thickness. The system (2.2) can be reduced to a second- 
order equation for the pressure perturbation. In the main approximation for E we come to 
the problem 

( ,, 2U~ T2 / ' 2 
- -  e q ~ o  

~ 0 ( 0 ) = 0 ,  n 0 ( Y ) ~ 0  , y ~ ,  q=Mz(U2--c)2/T2--t. 

Using  t h e  VKB method  [13]  in  an a n a l o g o u s  way t o  wha t  was done  in  [14]  f o r  s h o r t - w a v e  
perturbations of the boundary layer, we obtained the following results. In the entropy lay- 
er there is a discrete set of acoustic modes with phase speeds U2(0 ) + a2(0 ) < c < i + I/M, 
where a2(0 ) = r is the sound speed at the bottom of the entropy layer. From the nu- 
merical results of Sec. 4 we obtain U2(0 ) + a2(0 ) > I, i.e., for the given modes c > i and 
there is no critical layer. In this case the acoustic modes are neutral, and their eigen- 
functions and the dispersion relation have the form 
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Here Ai(z) is the Airy function [15]; Ya is the turn point at which U(y a) = c--a(Ya); and n 
is a large integer, the mode number. The eigenfunctions T0n(Y ) oscillate in the region 0 < 
Y < Ya and decay exponentially for y > ya. The number of zeros of the function Ton is n. 
If n is fixed, and the phase speed c + U2(0) + a=(0), then the turn point Ya + 0 and the 
wave number a n + =. For phase speeds c > 1 + I/M the solution of the equation oscillates, 
with no attenuation as y + =. The eigenvalue wave numbers fall in the region of the con- 
tinuum spectrum. 

4. The system of equations (2.2), (2.3), and (2.6) was integrated numerically by a 
fourth-order Runge-Kutta method. The main flow was computed from Eq. (1.2). The Newton 
method was used to search for eigenvalues. The calculations mentioned above were performed 
for g = 0. Figure 2a shows profiles of the mean flow and the entropy layer for M = 4, and 
adiabatic index ~ = 1.4. Curve 1 shows U2(y) , and curve 2 shows T2(y). Figure 3a shows 
the phase speed c n as a function of the wave number a for neutral acoustic modes. The upper 
broken curve shows the boundary c = 1 + l/M, above which there is a continuum spectrum; the 
lower curve shows the limit c = U2(0) + a 2(0). The solid lines show the dispersion relation 
(3.1), and the number of curves is the number of modes, n. Beginning with n = i, the asymp- 
tote agrees well with the numerical computation denoted by crosses. Figure 2b shows the 
eigenfunctions ~n(Y) of the acoustic modes, computed numerically for the phase speed c = 
1.23 (the curve number is n). In accordance with the asymptotic model of Sec. 3 the eigen- 
functions oscillate below the turn point Ya = 1.48 and decay exponentially for y = Ya. 

In the spectrum there is one unstable mode whose characteristics are shown in Fig. 3b. 
The increment of time o t = Im~T(~) (curve i) and of frequency Re~T(a) (curve 2) are typical 
for an inviscid instability of shear flows (here and below the index T denotes characteris- 
tics of an unstable mode). The eigenfunctions of the instability waves for s T = 0.2799 - 
i0.00393, m = 0.2583 are shown in Fig. 2c (curve 1 is the modulus of the x component of mass 
flow fluctuations, and 2 is the modulus of the pressure perturbations I~TI-20). The mass 
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flow perturbation has a clearly pronounced maximum in the critical layer, which agrees qual- 
itatively with the experimental data obtained on a blunt cone at M = 8 [16], and on a flat 
plate at M = 2 [17]. 

To analyze the type of instability we must examine the behavior of the roots ~(m) of 
the dispersion equation for complex m, lying in the band 0 < Imm ~ ~, where ~ = max [ImmT(~)]. 
Numerical computations have shown that the dispersion curve ~T(m), corresponding to an un- 
stable mode, does not have a branch point in the given band. Then, according to the criteria 
set out in [18, 19], the instability is convective. That is, a perturbation excited locally 
in x and t by an external action, attenuates with time at the fixed point x. As t + ~ the 
perturbation is converted to a wave packet of instability. The "bulge" of the packet is 
transported with the group speed V = dRe~T(~s)/d~ [=s is determined from the condition 
dImmT(~s)/d~ = 0]. It follows from the characteristics of ~T(~) (see Fig. 3b) that V > 0 
(the instability evolves downstream). 

If the instability wave is excited by some source acting at a given frequency m, then 
it grows downstream according to the spatial increment o x = -Im~T(~). Figure 4 shows the 
dependence of the maximum increments ax, m = max Ox(m) on the Mach number. The greatest in- 
stability is reached for M = 2.75. 

Figure 5 illustrates the influence of the boundary layer on a three-dimensional insta- 
bility of the entropy layer at M = 4. The boundary layer was computed for o = 0.72, and the 
stagnation temperature at the outer edge was 310 K. The wetted surface was assumed to be 
thermally insulated. In the computations the coordinate y~ was nondimensionalized to the 
boundary layer displacement thickness ~*, and therefore the parameter ~ = ~*/r N. The bound- 
ary layer proved to have a stabilizing influence on the unstable mode of the entropy layer. 
From the computations made in the range of temperature factors 0.2-1.8 it can be seen that 
the boundary layer on a cold wall stabilizes the unstable mode of the entropy layer more 
strongly than on a heated wall. 

In conclusion we note that as the boundary layer thickens downstream the self-oscilla- 
tions of the entropy layer become closer in scale to the boundary layer modes. In the ab- 
sorption regime, for which 6 ~ rN, one would expect a rapid growth of the intensity of fluc- 
tuations in the boundary layer due to its being penetrated by perturbations excited in the 
entropy zone. This effect was observed in the experiments of [16], 
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